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Fokker-Planck description of particle transport in finite media: Boundary conditions

A. Ziya Akcasu and James P. Holloway
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109

~Received 11 May 1998!

Using the Fokker-Planck description of particle transport, which is valid when the scattering is forwardly
peaked and the energy loss per scattering is small, the energy-dependent transport of electrons and photons in
finite homogeneous media is studied. Treating the coupling between the angular and spatial dependence of the
angular particle density as a small parameter, a modified diffusion equation for the particle number density
F(x,s) is obtained by a systematic perturbation expansion, and the appropriate boundary conditions on the
outer surface of the medium are developed. As an application, the transport of photons in a half-infinite
medium, for a pulsed coherent laser beam uniformly incident on the interface, is studied analytically and
numerically. The spatial distribution of photons in the medium, as a function of the distance from the interface
at different path lengths, as well as the path length distribution of the reflected photons, are obtained. Due to
its importance in diffusive wave spectroscopy, the Laplace transform of the path length distribution of the
reflected photons is calculated, and compared with the result obtained with the diffusion theory that assumes a
fictitious isotropic pulsed light source at a distancez0 from the surface of the medium. By matching the initial
slopes, a value 1.67l * is found forz0 , which enters the diffusion theory as an adjustable parameter.
@S1063-651X~98!07810-6#

PACS number~s!: 05.20.Dd, 52.65.Ff, 25.20.Dc
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I. INTRODUCTION

The conventional linear Boltzmann equation can be c
into the Fokker-Planck form when the scattering is forwar
peaked, and the energy change in scattering is small@1#:

]

]t
n~x,E,V,t !1v~E!V•“n

52v~E!Sa~E!n1
]

]E
@S~E!v~E!n#

2
v~E!S̄~E!

2
L2n, ~1!

wheren(x,E,V,t) is the energy-dependent angular partic
density; S(E) is the energy loss per unit distance, or t
stopping power;Sa(E) is the macroscopic absorption cro
section;S̄(E)5S tr(E)2Sa(E) whereS tr(E) is the transport
cross section;L2 is the total angular momentum operat
defined by

L252F ]

]m
~12m2!

]

]m
1

1

12m2

]2

]f2G , ~2!

the vectorV is the unit vector in the direction of particl
velocity; v(E) is the particle speed corresponding to the p
ticle energyE; m is the cosine of the polar angle describin
the unit vectorV, and f is the corresponding azimutha
angle. The sign ofL2 is chosen such that its eigenfunctio
Ylm(V), i.e., the spherical harmonics, satisfy

L2Ylm~V!5 l ~ l 11!Ylm~V!. ~3!

The definitions ofS(E) andS̄(E) in terms of the differential
cross section are
PRE 581063-651X/98/58~4!/4321~11!/$15.00
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S~E!5E
0

`

dE8E dV8~E2E8!Ss~E→E8,V•V8!, ~4!

S̄~E!52pE
0

`

dE8E
21

1

dm~12m!Ss~E→E8,m!. ~5!

We have shown in an earlier paper@2#, which will henceforth
be referred to as ‘‘I,’’ that, with the initial condition
n(x,E,V,0)5d(E2E0) f (x,V,0), the angular density can
be expressed as

n~x,E,V,t !5d„E2E~ t !…p~E! f ~x,V,t !, ~6a!

wherep(E) is the nonabsorption probability defined by

p~E!5expF2E
E

E0
dE8

Sa~E8!

S~E8! G
5expF2E

0

t

dt8v~ t8!Sa~ t8!G , ~6b!

where v(t)5v„E(t)… and Sa(t)5Sa„E(t)…. The function
E(t) is the solution of

dE~ t !

dt
52v~E!S~E!, ~7a!

with the initial conditionE(0)5E0 . It is a known function of
time. It proves convenient to rewrite this equation in terms
path lengths(t) usingds5v(t)dt as

dE~s!

ds
52S~E!, ~7b!

which is consistent with the meaning ofS(E) as the energy
loss per unit distance. Henceforth, we shall use the p
4321 © 1998 The American Physical Society
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length variables instead of the time variablet; these are
transformed into each other throughds5v(t)dt, which is
clearly just a change of variables. The functionf (x,V,s),
which is introduced in Eq.~6!, satisfies

]

]s
f ~x,V,s!1V•“ f 52

S̄~s!

2
L2f , ~8!

where S̄(s)5S̄„E(s)…. The elimination of the energy vari
able in Eq.~1! enables one to reduce the original Fokke
Planck equation for the full energy-dependent angular d
sity n(x,E,V,s) to the simpler form given in Eq.~8! for
f (x,V,s). The latter can be interpreted as the one-sp
Fokker-Planck equation for the angular particle density
the absence of absorption. In many problems one is no
terested in the angular information, and tries to obtain
approximate equation~diffusion approximation! for the num-
ber density defined by

F~x,s!5E dV f ~x,V,s!. ~9!

In I, we have shown, by using an elimination procedu
based on the projection operator formalism in which the c
pling operatorL152V•“ in Eq. ~8! is treated as small, tha
F(x,s) satisfies the following diffusion equation up to se
ond order inL1 :

]F~x,s!

]s
52m~s!

]F

]z
1D i~s!

]2F

]z2 1DT~s!S ]2F

]x2 1
]2F

]y2 D .

~10!

In deriving this equation, the initial condition for the angul
density is taken to be monodirectional, i.e.,f (x,V,0)
5d(V2V0)F(x,0), and thez axis is chosen parallel toV0 .
In this equation,D i(s) and DT(s) denote, respectively, th
s-dependent parallel and transverse diffusion coefficie
D i(s) characterizes the diffusion of particles parallel to t
initial direction, V0 , whereasDT(s) characterizes diffusion
on a plane perpendicular toV0 . The expressions ofD i(s),
DT(s), and m(s), which are presented in I, as well as a
earlier paper@3#, will not be needed in the following deriva
tions.

The diffusion equation in Eq.~10! was solved in I and in
Refs.@3,4# in an infinite medium, and its application to dos
calculations in tissue resulting from an electron beam w
discussed@3,4#. The possibility of using Eq.~10! in diffusive
wave spectroscopy~DWS!, where the number densit
F(x,s) is interpreted as the path length distribution of ph
tons arriving at the detector, was also mentioned in I.

It is clear that, in such applications, the finiteness of
medium in which the particles are transported must be ta
into account: in the case of dose calculations, an elec
beam is directed to the tissue from outside; in the case
DWS the intensity correlations of either the backscatte
light, or of the transmitted light through a slab are cons
ered. Therefore, for realistic applications of Eq.~10!, we
have to obtain solutions in a finite medium, such as a se
infinite or a finite slab. To obtain solutions of Eq.~10! in
finite media we have to first establish the appropriate bou
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ary conditions consistent with the approximations used in
derivation of Eq.~10!. This is the main theme of this pape

The organization of the paper is as follows. In Sec. II w
present an alternative and more physical derivation of
~10! without resorting to the general and abstract method
elimination of fast variables~the direction variableV in our
application!, which was presented in I. Such a simpler de
vation is now possible because we already know from I t
Eq. ~10! is obtained by ignoring the terms of third and high
order in a power series expansion in the coupling opera
L152V•“. However, the purpose of Sec. II is not only
provide an alternative derivation of a known result: the n
derivation is based on an expansion off (x,V,s) into spheri-
cal harmonics, which enables us to calculate the partial c
rents needed to establish the appropriate boundary co
tions. The details of these calculations, and the bound
conditions themselves, are presented in Sec. III. Section
illustrates an implementation of the boundary conditions
the case of a half-infinite medium, where the angular dis
bution of the albedo current is explicitly calculated. The im
plication of the results of Sec. IV in DWS, as well as co
clusions, are discussed in Sec. V.

II. AN ALTERNATIVE DERIVATION OF EQ. „10…

We start with Eq.~8! and rewrite it as

] f ~x,V,s!

]s
1«V•“ f ~x,V,s!52

1

2
S̄~s!L2f ~x,V,s!,

~11!

where we have put the smallness parameter« in evidence, as
suggested by the derivation in I. We solve this equation
suming that the initial angular distribution is separable
space and angle:

f ~x,V,0!5P~V,0!F~x,0!, ~12!

whereP(V,0) is the initial angular distribution, and henc
normalized

E dV P~V,0!51.

The F(x,0) is the initial value of the spatial distribution, o
the scalar number density, defined for alls by

F~x,s!5E dV f ~x,V,s!. ~13!

The separability assumption in Eq.~12! is satisfied in the
problems we will be interested in. The angular distributi
f (x,V,s) cannot remain separable fors.0 because of the
streaming operator«V•“ in Eq. ~11!, which couples the
angular and spatial evolution off. In the absence of this term
the angular distribution would evolve ins according to

]

]s
P~V,s!1

1

2
S̄~s!L2P~V,s!50, ~14!

which is easily solved as

P~V,s!5e2~1/2!Q~s!L2
P~V,0!, ~15a!
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where

Q~s!5E
0

s

ds8S̄~s8!. ~15b!

We mention for future use that, when the initial angular d
tribution is isotropic, i.e., whenP(V,0)51/4p, P(V,s)
51/4p for all s becauseL2150. The expression ofP(V,s)
for initially monodirectional particles, i.e., forP(V,0)
5d(V2V0), will be given in Sec. III@cf. Eq. ~33!#. The
first angular moment ofP(V,s) follows from Eq.~15a! as

^V~s!&5e2Q~s!^V~0!&. ~16!

In obtaining Eq.~16!, we have used the fact thatL2 is self-
adjoint, andL2V52V.

Returning to the nonseparability off (x,V,s) for s.0, we
have found thatf (x,V,s) is separable for alls.0 in the
absence of the streaming term in the Fokker-Planck equa
and hence can be written asf (x,V,s)5P(V,s)F(x,0) at all
times. In order to take into account the coupling between
evolution ofx andV, caused by the streaming operator, w
expandf (x,V,s)2P(V,s)F(x,s) into spherical harmonics
as follows:

f ~x,V,s!5P~V,s!F~x,s!1A~x,s!1
3

4p
JD~x,s!•V

1~higher-order terms!, ~17a!

whereF(x,s), A(x,s), andJD(x,s) are the expansion coef
ficients to be determined, and the higher-order terms in
expansion consist of second- and higher-order spherical
monics. Integration of Eq.~17a! over angles then yields
A(x,s)50, so that the expansion reduces to

f ~x,V,s!5P~V,s!F~x,s!1
3

4p
JD~x,s!•V

1~higher-order terms!. ~17b!

Our strategy can be outlined as follows. In Eq.~17b!, the first
term is of zeroth order in«. The remaining terms are at lea
of first order in«, because they vanish when«50. We de-
termine only the second term in the lowest order in«, al-
though the terms involving higher-order spherical harmon
also contribute tof (x,V,s) at the same order. The reason f
neglecting the contributions of higher-order terms is that
aim in this paper is only to modify and extend the diffusi
approximation in order to include the initial ballistic evolu
tion of a monodirectional particle beam. The inclusion of t
contributions from the higher-order spherical harmon
would lead to a systematic extension of thePN approxima-
tion.

The JD(x,s) can be related to the usual current dens
J(x,s), which is defined by

J~x,s![E dV Vf ~x,V,s!, ~18!

by multiplying Eq.~17b! by V, and then integrating overV
we arrive at
-

n,

e

e
r-

s

r

s

J~x,s!5^V~s!&F~x,s!1JD~x,s!. ~19!

The first term in Eq.~19! represents the effect of the initia
angular distribution, whereasJD(x,s) accounts for the usua
diffusion current, and satisfies Fick’s law with ans-
dependent diffusion constant, as we show below.

Since the first term in Eq.~17b! at s50 is exactly equal to
f (x,V,0) by construction,JD(x,0)50. In order to obtain
equations forF(x,s) andJD(x,s) for s.0, we substitute the
expansion in Eq.~17b! into the Fokker-Planck equation~11!,
and take the zeroth and first angular moments of the resu
equation yielding

]F~x,s!

]s
52«“•@^V~s!&F~x,s!1JD~x,s!#, ~20!

]JD~x,s!

]s
1S̄~s!JD~x,s!52«dF~s!•“F~x,s!. ~21!

The first equation is the continuity equation, and exact. T
second equation is approximate because we have negle
in its derivation the term«^V(s)&“•JD(x,s), which is of
second order in the coupling constant« becauseJD(x,s) it-
self is of order«. In Eq.~21! we have introduced the varianc
matrix dF(s), which is defined by

dF~s!5E dV VVP~V,s!2^V~s!&^V~s!&

5^V~s!V~s!&2^V~s!&^V~s!&, ~22!

and was calculated explicitly earlier@2,3#. We do not need to
present the expression ofdF(s) in the subsequent deriva
tions.

Equation~21! can be solved forJD(x,s) as

JD~x,s!52«E
0

s

du e2@Q~s!2Q~u!#dF~u!•“F~x,u!,

~23!

where we have used the initial conditionJD(x,0)50. Substi-
tution of JD(x,s) from Eq. ~23! into the continuity equation
~20! yields an integro-differential equation for the numb
densityF(x,s):

]F~x,s!

]s
52«^V~s!&•“F~x,s!

1«2E
0

s

du e2@Q~s!2Q~u!#
“•dF~u!•“F~x,u!.

~24!

We can obtain either the diffusion equation or the teleg
pher’s equation from Eq.~24!: to obtain the diffusion equa
tion, we treatF(x,u) in Eq. ~24! as a slowly varying function
of u, replace it byF(x,s), and take it outside theu integral.
This step is justified because the Taylor series expansio
F(x,u) about s contains]F(x,s)/]s, which is at least of
order« according to the continuity equation~20!. With this
simplification, Eq.~24! reduces to
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]F~x,s!

]s
52«^V~s!&•

]F

]x
1«2

“•D~s!•“F, ~25!

which is the desired modified diffusion equation in mat
form. In Eq. ~25!, we have introduced the diffusion matri
D(s) as

D~s!5E
0

s

du e2@Q~s!2Q~u!#dF~u!. ~26!

The calculation ofD(s), also, was presented in two earli
papers@2,3#. Equation~25! is the same as Eq.~10!, but with-
out the assumption that the initial distribution is monodire
tional. The accuracy of the diffusion equation in powers o«
is explicitly displayed in Eq.~25!. The simplification used in
obtaining Eq.~25! is equivalent to approximating the diffu
sion currentJD(x,s) in Eq. ~20! by the usual Fick law

JD~x,s!52«D~s!•“F~x,s!. ~27!

In order to obtain the telegrapher’s equation, we differe
tiate Eq. ~24! with respect tos, and then eliminate the
memory integral in it in favor of the first time derivative o
F(x,s). After some algebra, we obtain

]2F~x,s!

]s2 1S̄~s!
]F~x,s!

]s
5«2

“•F~s!•“F~x,s!,

~28!

whereF(s)5^V(s)V(s)& @see Eq.~22!#. Since we shall not
use the telegrapher’s equation in this paper, we do
present the intermediate steps of its derivation.

III. PARTIAL CURRENTS AND BOUNDARY CONDITIONS

The partial currents for a given directionn̂ are defined in
the usual way by integratingn̂•Vf (x,V,s) over a half
range:

J1
n̂ ~x,s!5E

n̂•V.0
dV n̂•Vf ~x,V,s! ~29a!

and

J2
n̂ ~x,s!52E

n̂•V,0
dV n̂•Vf ~x,V,s!. ~29b!

Substituting the expansion off (x,V,s) obtained in Sec. II,
i.e.,

f ~x,V,s!5P~V,s!F~x,s!1
3

4p
JD~x,s!•V, ~30!

into Eqs.~29!, we obtain

J6
n̂ ~x,s!5^n̂•V~s!&6F~x,s!6 1

2 n̂•JD~x,s!, ~31!

where^n̂•V(s)&6 denote

^n̂•V~s!&15E
n̂•V.0

dV n̂•VP~V,s! ~32a!

and
-

-

ot

^n̂•V~s!&252E
n̂•V,0

dV n̂•VP~V,s!. ~32b!

In the special case of an isotropic initial distributio
P(V,s)51/4p, and hence we obtain̂n̂•V(s)&65 1

4 , so
that Eq.~31! reduces to the conventional expression of t
partial currents in the conventional diffusion theory.

As another limiting case, we consider initially monodire
tional particles so thatP(V,0)5d(V2V0), and choosen̂ in
the direction of V0 . In this case,^n̂•V(0)&151, and
^n̂•V(0)&250. For sÞ0, we first obtainP(V,s), given in
Eq. ~15a! with the initial distributionP(V,0)5d(V2V0).
Representing thed function in terms of spherical harmonics
we obtain

P~V,s!5(
l ,m

e2~1/2!Q~s!l ~ l 11!Ylm~V!Ylm
* ~V0!

5(
l 50

`
2l 11

4p
Pl~V•V0!e2~1/2!Q~s!l ~ l 11!. ~33!

@We point out for future reference thatP(V,s) becomes iso-
tropic in the limit ofQ(s)→`, because in this limit only the
l 50 term survives in Eq.~33!, and henceP(V,s)→1/4p.#

To calculatê n̂•V(s)&1 , we write Eq.~32a! explicitly

^n̂•V~s!&15E
0

1

dm mE
0

2p

dw P~V,s!. ~34!

To perform the integrals in Eq.~34!, we choosen̂ in the
direction of V0 , so that in Eq.~33! V•V05m, the polar
angle ofV, and obtain

^n̂•V~s!&15(
l 50

`
2l 11

2
e2~1/2!Q~s!l ~ l 11!E

0

1

dm mPl~m!.

~35!

We verify in passing the value of^n̂•V(0)&1 ,

^n̂•V~0!&15E
0

1

dm m(
l 50

`
2l 11

2
Pl~m!

5E
0

1

dm md~m21!51.

The integral in Eq.~35! is known @5#,

E
0

1

dm mPl~m!5
Ap

4

1

G~ 3
2 2 l /2!G~21 l /2!

. ~36!

We observe from this formula that the integral vanishes
all odd l except forl 51, i.e., for oddl

E
0

1

dm mPl~m!5 1
3 d l ,1 ,

which can be verified directly by observing thatmPl(m) is
even whenl is odd, and extending the range of integration
~21,1!. Hence, Eq.~35! can be written as
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^n̂•V~s!&15
1

2
e2Q~s!1

Ap

8 (
l ~even!50

`
2l 11

G~ 3
2 2 l /2!G~21 l /2!

3e2Q~s!l ~ l 11!/2. ~37!

The alternating series in Eq.~37! is rapidly convergent.
To demonstrate this assertion, we consider the limit os
50. Since we know that̂ n̂•V(0)&151 in this limit, we
must have

Ap

8 (
l ~even!50

`
2l 11

G~ 3
2 2 l /2!G~21 l /2!

5
1

2
.

The sum of the first three terms is 0.467, which is inde
close to 0.5.

We now calculatê n̂•V(s)&2 . Since

^n̂•V~s!&5e2Q~s!

and ^n̂•V(s)&5^n̂•V(s)&12^n̂•V(s)&2 , we obtain
^n̂•V(s)&2 as

^n̂•V~s!&25^n̂•V~s!&12^n̂•V~s!& ~38a!

or explicitly as

^n̂•V~s!&252
1

2
e2Q~s!1

Ap

8 (
l ~even!50

`

3
2l 11

G~ 3
2 2 l /2!G~21 l /2!

e2Q~s!l ~ l 11!/2.

~38b!

We verify, as a check, that botĥn̂•V(s)&6 approach1
4 in

the limit of Q(s)→`, because in this limit,P(V,s) be-
comes isotropic as we have already pointed out after
~33!. Indeed, asQ(s)→`, the first terms in Eqs.~37! and
~38b! vanish, and only the terml 50 survives in the second

terms. The latter is1
4 becauseG( 3

2 )5Ap/2 and G(2)51,
proving the assertion.

The boundary condition for a specified geometry can n
be implemented in terms of the partial currents in the us
way, as Sec. IV demonstrates.

IV. IMPLEMENTATION OF THE BOUNDARY
CONDITION IN A SEMI-INFINITE MEDIUM

We consider a semi-infinite medium, and a normally
cident beam of particles on its interface with vacuum as
dicated in Fig. 1. Since the problem is one dimensional,
diffusion equation to be solved is

]F~x,s!

]s
52m~s!

]F

]x
1D~s!

]2F

]x2 , ~39!

where

m~s!5^x̂•V~s!&5e2Q~s!,

andD(s)5D i(s). The parallel diffusion coefficient was ca
culated earlier@2,3#:
d

q.

al

-
-
e

D i~s!5 1
3 e2Q~s!E

0

s

ds8@eQ~s8!23e2Q~s8!12e22Q~s8!#.

~40!

We shall solve Eq.~39! for a burst of monodirectiona
particles~one particle/cm2! in the x direction, introduced at
x501 and s50. This source condition corresponds to
initial angular densityf (x,m,s50)5d(m21)d(x201). In-
tegrating overm, we obtain the initial condition forF(x,s) as
F(x,0)5d(x201). The appropriate boundary condition
are F(x→`,s)50 at infinity, andJ1(0,s)5d(s) at x50,
i.e.,

m1~s!F~0,s!2
1

2
D~s!

]F~x,s!

]x U
x50

5d~s!, ~41a!

where m1(s)5^x̂•V(s)&1 , which is defined in Eq.~37!.
This condition shows thatF(0,s) has a singularity ats50,
which can be removed by introducingF1(0,s)5F(0,s)
2d(s). SinceD(0)50 andm1(0)51, the boundary condi-
tion for the nonsingular part becomes

m1~s!F1~0,s!2
1

2
D~s!

]F1~x,s!

]x U
x50

50. ~41b!

It is clear thatF1(0,s)5F(0,s) for all s.0.
The solution of Eq.~39! is constructed by first taking its

one-sided Fourier transform with respect tox:

]F̄~k,s!

]s
52@D~s!k21 ikm~s!#F̄~k,s!1R~k,s!, ~42!

where

F̄~k,s!5E
0

`

dx F~x,s!e2 ikx, ~43a!

F~x,s!5
1

2p E
2`

`

dk F̄~k,s!eikx, ~43b!

and

R~k,s!5@m~s!2 ikD~s!#F~0,s!2D~s!]F~x,s!/]xux50 .
~44a!

FIG. 1. Normal incidence on the interface of a half-infini
sample.
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Clearly, R(k,s) contains the unknown boundary conditio
F(0,s) and]F(x,s)/]xux50 . The latter can be expressed
terms ofF(0,s) by invoking the boundary condition in Eq
~41b!:

R~k,s!5@m~s!22m1~s!2 ikD~s!#F~0,s!12d~s!.
~44b!

Sincem(s)5m1(s)2m2(s), we further simplify Eq.~44b!
as

R~k,s!52@M ~s!1 ikD~s!#F~0,s!12d~s!, ~44c!

where we have introducedM (s)5m1(s)1m2(s), which is
explicitly given by

M ~s!5
Ap

4 (
l ~even!50

`
2l 11

G~ 3
2 2 l /2!G~21 l /2!

e2~1/2!Q~s!l ~ l 11!

~45!

@see Eqs.~37! and~38b! for m1(s) andm2(s)#. The substi-
tution of Eq. ~44c! into Eq. ~42! results in the following
inhomogeneous equation:

]F̄~k,s!

]s
52@D~s!k21 ikm~s!#F̄~k,s!

2@M ~s!1 ikD~s!#F~0,s!12d~s!. ~46a!

We eliminate the singular part ofF(0,s) by using F(0,s)
5F1(0,s)1d(s) to obtain

]F̄~k,s!

]s
52@D~s!k21 ikm~s!#F̄~k,s!

2@M ~s!1 ikD~s!#F1~0,s!1d~s!. ~46b!

We should emphasize here that becausex50 is to the left
of the source located atx501, F1(0,s) is not the limit of
F(x,s) as x→0 from the right. This discontinuity, which
does not arise in ordinary diffusion theory, is due to the f
that D(s)→0 rapidly ass→0, reflecting the initial ballistic
motion of the particles in the modified diffusion equatio
~39!.

The d function in Eq.~46b! determines the initial condi
tion for F̄(k,s) as F̄(k,0)51, which is consistent with the
initial condition F(x,0)5d(x201). The solution of Eq.
~46b! with this initial condition is then obtained fors.0 as

F̄~k,s!5F̄`~k,s!2E
0

s

ds8Ḡ`~k;s,s8!

3@M ~s8!1 ikD~s8!#F1~0,s8!, ~47!

where

F̄`~k,s!5exp$2@ 1
2 s2~s!k21 ikm̄~s!#%, ~48a!

and

Ḡ`~k;s,s8!5exp„2$ 1
2 @s2~s!2s2~s8!#k2

1 ik@m̄~s!2m̄~s8!#%…, ~48b!
t

which is equal toF̄`(k,s)/F̄`(k,s8). One can easily verify
that F̄`(k,s) is the infinite medium solution of Eq.~39! in
Fourier space with the initial conditionF̄`(k,0)51, corre-
sponding to a monodirectional unit pulse source of partic
at x50. In Eq. ~48! we have introduced

m̄~s!5E
0

s

ds8m~s8! ~49!

and

s2~s!52E
0

s

ds8D~s8!. ~50!

It is clear thatm̄(s) is the mean particle position̂x(s)& of
the pulse for the case of an infinite medium, ands2(s) is the
variance^x2&2^x(s)&2 of the particle positions for an infi-
nite medium. The properties of this solution were discus
in detail elsewhere@2–4#.

The inverse Fourier transform of Eq.~47! gives the semi-
finite medium solution as

F~x,s!5F`~x,s!2E
0

s

ds8@G`~x;s,s8!M ~s8!

1G8̀ ~x;s,s8!D~s8!#F1~0,s8!, ~51!

where

F`~x,s!5
1

~2p!1/2s~s!
expH 2

@x2m̄~s!#2

2s2~s! J , ~52a!

G`~x;s,s8!5
1

~2p!1/2@s2~s!2s2~s8!#1/2

3expH 2
$x2@m̄~s!2m̄~s8!#%2

2@s2~s!2s2~s8!# J ,

~52b!

andG8̀ (x;s,s8)5]G`(x;s,s8)/]x. The F1(0,s) in Eq. ~51!
is still unknown.

By evaluating Eq.~51! at x50, we obtain a consistenc
relation, from whichF1(0,s) can be obtained,

F1~0,s!5F`~0,s!2E
0

s

ds8@G`~0;s,s8!M ~s8!

1G8̀ ~0;s,s8!D~s8!#F1~0,s8!, s.0. ~53!

Although not in a closed form, Eqs.~51! and~53! express the
semi-infinite solution in terms of the known infinite mediu
solution.

OnceF(x,s) is obtained by solving Eqs.~51! and ~53!,
the partial currentJ2(x,s) can be obtained from

J2~x,s!5m2~s!F~x,s!1
1

2
D~s!

]F~x,s!

]x
. ~54!
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The backscattered currentJ2(0,s) is of particular interest in
diffusive wave spectroscopy@6#. Evaluating Eq.~54! at x
50, and combining the result with the boundary condition
Eq. ~41a!, we obtain

J2~0,s!5M ~s!F~0,s!2d~s!5M ~s!F1~0,s!, ~55!

where M (s)5m1(s)1m2(s), and is given in Eq.~45!.
Thus it is sufficient to solve only the integral equation~53!
for F1(0,s) in order to determine the reflected curre
J2(0,s).

One can verify, as a consistency check, that

E
0

`

dsJ2~0,s!51

as it should be because only one particle is introduced
the medium initially. Since it is normalized to unity,J2(0,s)
is the path length distribution of backscattered photons.

A. Numerical computation of F „x,s…

We must first solve the integral equation, Eq.~53!, for
F1(s)5F1(0,s). To do so, we note thatF1(0)50 and inter-
polateF1(s) on a grid ofs values$s0 ,s1 ,...% using an ex-
pansion in a cardinal basis setCi(s) as

F1~s!'(
i 50

`

FiCi~s!, ~56!

whereCi(sj )5d i j and Fi'F1(si). Substitution of this ex-
pansion into Eq.~53! results in a system of linear equation
to solve for the coefficientsFi ,

Fk5F`~0,sk!2(
i 50

`

FiE
0

sk
ds8K~0;sk ,s8!Ci~s8!, ~57!

where

K~x;s,s8!5G`~x;s,s8!FM ~s8!1D~s8!
m̄~s!2m̄~s8!2x

s2~s!2s2~s8! G
~58!

is the kernel from Eq.~51! written in a slightly different
form.

If the interpolation functionsCi(s) are selected so tha
Ci(s)50 for s,si then, usingF1(0)5F050, the system of
equations, i.e., Eq.~57!, is lower diagonal, and can be triv
ally solved forFk as

Fk5

F`~0,sk!2 (
i 51

k21

FiE
0

sk
ds8K~0;sk ,s8!Ci~s8!

11E
0

sk
ds8K~0;sk ,s8!Ci~s8!

. ~59!

ComputingFk for k51,2,3, . . . is then simply a matter of
numerically computing the values of the integrals

E
0

sk
ds8K~0;sk ,s8!Ci~s8!, k51,2, . . . .
to

Once theFk are obtained, it is also possible to comput

F1~x,sk!5F`~x,sk!2 (
i 51

k21

FiE
0

sk
ds8K~x;sk ,s8!Ci~s8!,

~60!

by evaluating some integrals numerically.
We select the piecewise-constant cardinal basis

Ci~s!5H 1, si<s,si 11

0 otherwise.
~61!

This choice leads to a truncation error in the integral eq
tion that is of orderDs3/2, whereDs5mini(si112si) is the
mesh spacing of the grid. The fractional power arises
cause of the square-root singularity in the kernel ass8→s
Þ0. Because of this truncation error we can afford to a
proximate the integrals in Eq.~59! with a similar error. This
can be done by changing the variable of integration
s2(s8), averaging the regular part of the integrand over
interval @s2(si),s

2(si 11)#, and performing the integral o
the singular part exactly. Only assi→0 is any care required
but in this limit the exponential goes to zero very rapidly,
there is in fact no difficulty there.

Figure 2 shows the functionF1(s)5F1(0,s) for 0<s
<10 ~solid line!; also shown, for comparison, is the functio
F`(0,s), which is the infinite medium solution, and is give
analytically by Eq.~52a!. In this figure, and in all that follow,
S̄ is taken to be independent of path length, and path len
itself is measured in units of 1/S̄, and hence unitless. On
can show analytically thatF`(s) and F1(s) approach as-
ymptotically to, respectively,A3/4p/s1/2 and c/s3/2 as s
→`, which are also plotted in the figure withc'2.04. The
numerical value ofc is obtained through curve fitting. It is
observed thatF1(s) attains its asymptotic behavior mor
slowly thanF`(s) does.

FIG. 2. The nonsingular part of the distribution function,F1(s),
in the finite medium~solid line!, compared with the infinite medium
solution,F`(0,s) ~dashed-dotted line!, for path lengths up to 500/S̄.
The asymptotic behavior of both curves is also indicated by das
and dotted lines.
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From F1(s) we can compute all other quantities of inte
est, such asF(x,s), which is given in Eq.~60!, and the
probability distributionP(x;s) of finding a particle, which is
introduced into the medium atx50 ats50, in a unit interval
aboutx after having traversed a path lengths:

P~x;s!5
1

N~s!
F~x,s!, ~62!

whereN(s) is the number of particles remaining in the m
dium at a path lengths, i.e.,

N~s!5E
0

`

dx F~x,s!

512E
0

s

ds8M ~s8!F1~s8!

5E
s

`

ds8M ~s8!F1~s8!. ~63!

The second line, which expressesN(s) directly in terms of
F1(s), follows from the expression of the outgoing parti
current given in Eq.~55!. Figure 3 shows a log plot ofN(s).
In this plot we see that at large path lengthss the number of
particles in the system decays algebraically; fitting a line
this data suggests thatN(s);s20.5. Using the asymptotic
behavior ofM (s)F1(s)→c/2s3/2 for larges in Eq. ~63!, we
indeed find thatN(s)→c/s1/2 wherec'2.04.

The variation of the probability distributionP(x;s) as a
function of distance from the interface is presented in Fig
for four values of s. We note in this figure tha
limx→0P(x;s)ÞF1(0,s)/N(s) for smalls. This is because o
the presence of the pulsed sourced(x201)d(s), the influ-
ence of which persists even fors.0. @See the comment fol
lowing Eq. ~46b!.#

It is also of some interest to compute the mean position
the particles in the medium

^x&~s!5E
0

`

dx xP~x;s!. ~64!

FIG. 3. The variation of the total number of particlesN(s) in the
medium as a function of the path lengths.
o

4

f

This can also be expressed in terms ofF1(s) directly. Mul-
tiplying Eq. ~39! by x, integrating overx, and evaluating
various integrals by parts yields

d

ds
N~s!^x&~s!5m~s!N~s!1D~s!F1~0,s!. ~65!

In the last term we usedD(s)F(0,s)5D(s)@d(s)
1F1(0,s)#5D(s)F1(0,s) and D(0)50. Integration overs,
and usinĝ x&(0)50 yields

^x&~s!5
1

N~s! F E
0

s

ds8m~s8!N~s8!1E
0

s

ds8D~s8!F1~s8!G .
~66!

Figure 5 showŝ x&(s) as computed from theF1(s) pre-
sented in Fig. 2. We observe from this plot that those p
ticles that remain in the medium penetrate more and m
deeply, with their mean position traveling initially at almo
the particle speed. Indeed, for smalls, the first term in Eq.

FIG. 4. The variation of the spatial probability distribution
P(x;s) as a function of the distance from the interface for fo
values of the path lengths.

FIG. 5. The variation of the mean particle position^x&(s) and
the standard deviationsx(s) with path lengths.
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~66! dominates, and sinceN(s) and m(s) tend to unity as
s→0, we obtain̂ x&(s)→s. The behavior of̂ x&(s) for large
s can also be determined from Eq.~66!: since the integrals on
the right hand side are convergent, it is 1/N(s) that dictates
the asymptotic behavior of̂x&(s). Hence, one findŝx&(s)
→(K/c)As, where

K5E
0

`

ds m~s!N~s!1E
0

`

ds D~s!F1~s!,

andc'2.04. This behavior of̂x&(s) is very different from
the mean particle position in an infinite medium solutio
which asymptotically approaches^x&51, the penetration dis
tance, as discussed in an earlier paper@2#. This difference is
mainly due to the fact that in the finite medium there are v
few particles traveling to the left, because those partic
quickly leave the medium and cease to contribute to
mean position. It is interesting to note that the first spa
moment of the particle densityF1(x,s), which is equal to
N(s)^x&(s), approaches the valueK'1.56.

Figure 5 also shows the variation of the standard de
tion sx(s)5$Š@x2^x&(s)#2

‹%,1/2 as a function ofs. The ex-
pression of the second moment^x2&(s) is obtained by mul-
tiplying Eq. ~39! by x2, integrating overx, and evaluating
various integrals by parts as it was done to obtain Eqs.~65!
and ~66!; the result is

^x2&~s!5
2

N~s!
E

0

s

ds8@m~s8!N~s8!^x&~s8!1D~s8!N~s8!#.

~67!

For smalls, the first term dominates. SinceN(s) andm(s)
tend to unity, and^x&(s)→s as s→0, we find ^x2&(s)
→s2, andsx

2(s)→0 in this limit. This is expected becaus
the particles predominantly stream for smalls. For larges,
the second term in Eq.~67! dominates; this diverges as 4s/3
becauseD(s→})5 1

3 and N(s→`)→c/As. Thus, since
^x&(s)→(K/c)As as s→`, the variance behaves assx

2(s

→`)→@ 4
3 2(K/c)2# s'0.75s implying a diffusion motion

of particles about their mean position. The numerical va
0.75 is close to2

3, as one expects from the mean squa
displacement 2Ds due to diffusion with the diffusion coef
ficient 1

3.

B. Application to diffusive wave spectroscopy

The path length distributionP(s) of the backscattered
particles in the absence of absorption in the medium is eq
to the outgoing partial currentJ2(0,s) at the interface, i.e.,

P~s!5M ~s!F1~s!. ~68!

The variation ofP(s) with path length is shown in Fig. 6
The probability that a particle will emerge from the mediu
with a path length less thans50.5 is virtually zero due to the
forwardness of scattering. The probability peaks at abous
52.2 with a value of approximately 0.08, decreases v
gradually thereafter, approaching asymptotically toc/s3/2.
This implies that most of the particles are backscattered a
having traversed path lengths larger thans52. In diffusive
wave spectroscopy the measured intensity correlation fu
,
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tion is expressed in terms of the Laplace transform ofP(s)
@6,7#. Figure 7 shows the variation of

g1~q!5E
0

`

ds e2qsP~s!, ~69!

with q. One can verify analytically thatg1(q) behaves for
small q as

g1~q!→
e2A3q

11A~16/3!q
. ~70!

This tendency is indicated in Fig. 7 as the initial slope
g1(q).

Although the actual light source in an optical measu
ment is a coherent laser beam, which is uniformly incide
on the interface of the medium, the calculation of the p
length distribution by using the diffusion theory in diffusiv

FIG. 6. The variation of the path length distribution of the r
flected particles as a function of path lengths.

FIG. 7. The variation ofg1(q), the Laplace transform of the
path length distributionP(s), with the Laplace variableq ~solid
curve!. The dotted curve showsg1(q) as calculated with the diffu-
sion theory assuming a fictitious isotropic plane light source loca
at z051.67 from the interface in the medium.
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wave spectroscopy assumes a fictitious isotropic light sou
located at some distancez0 inside thesample. The value of
z0 is taken to be approximately the transport mean free p
to allow the coherent light entering the medium to beco
diffusive as a result of a sufficient number of collision
When the reflection of the photons from inside at the int
face back into the medium is neglected, the diffusion the
yields @6,7# the following expression forg1(q):

g1~q!→
e2z0A3q

11A~4/3!q
~diffusion theory!. ~71!

By matching the initial slope2@z01( 2
3 )#) of this expres-

sion to 2@11( 4
3 )#) of Eq. ~70!, we obtainz0511( 2

3 )
51.67.

The comparison of the results forg1(q), obtained with
the modified diffusion theory developed in this paper, a
those obtained with the diffusion theory are shown in Fig
The difference is due to the fact that the modified diffusi
theory treats the transition from the initial coherent behav
to the diffusive regime more accurately than traditional d
fusion theory with an isotropic source inside the mediu
We do not pursue this point any further, because we int
to apply the modified diffusion theory to a slab sample w
finite thickness, and investigate the angular dependenc
the intensity correlation function of the reflected light at t
front surface, as well as that of transmitted light as a funct
of the slab thickness in a separate publication.

V. DISCUSSIONS AND CONCLUSIONS

Once F(x,s) is obtained approximately by solving th
modified diffusion equation~25! in a specified geometry
with the appropriate boundary conditions, we can constr
the full solution of the original Fokker-Planck equation~1!
for the energy-dependent angular number dens
n(x,E,V,t), by substituting the expansion off (x,V,s) in
Eq. ~12! into Eq. ~6a!:

n~x,E,V,s!5d„E2E~s!…p~s!

3FP~V,s!F~x,s!1
3

4p
JD~x,s!•VG ,

~72!

where the functionsE(s), p(s), P(V,s), and JD(x,s) are
given, respectively, by Eqs.~7b!, ~6b!, ~15a!, and ~27!. The
energy-dependent number density and the particle curren
obtained from Eq.~72! as

n~x,E,s!5d„E2E~s!…p~s!F~x,s!, ~73a!

J~x,E,s!5d„E2E~s!…p~s!v~s!@^V~s!&F~x,s!1JD~x,s!#.
~73b!

The partial currents along a directionn̂ follow as

J6
n̂ ~x,E,s!5d@E2E~s!#p~s!v~s!

3@^n̂•V~s!&6F~x,s!6 1
2 n̂•JD~x,s!#,

~73c!
ce
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where^n̂•V(s)&6 are given by Eqs.~37! and ~38b!. In par-
ticular, the reflected current in the case of the semi-infin
medium as discussed in Sec. IV is obtained from Eq.~12! as

J2~0,E,s!5d@E2E~s!#p~s!v~s!M ~s!F1~0,s!. ~74!

We plan to use these results, in the future, to calculate
path length distribution of reflected photons, which enters
the interpretation of the intensity correlation function of t
reflected light in diffusive wave spectroscopy.

The weak-coupling expansion described in this pape
also applicable to the one-speed transport equation:

]

]s
n~x,V,s!1«V•“n

52S tn1E dV8Ss~V•V8!n~x,V8,s!, ~75!

where s5vt is the path length, andS t5Sa1Ss . The ap-
proximate solution can be constructed as in Eq.~72!,

n~x,V,s!5p~s!FP~V,s!F~x,s!1
3

4p
JD~x,s!•VG ,

~76!

wherep(s)5exp@2Sas#, andP(V,s) is the solution of

]

]s
P~V,s!52SsP~V,s!1E dV8Ss~V•V8!P~V8,s!

~77!

instead of Eq.~14!. This is the only difference between th
Fokker-Planck and the one-speed transport descripti
Whereas the exact solution of Eq.~14! is available in a
closed form, as presented in Eq.~15a!, an analytical solution
of Eq. ~77! is not readily forthcoming. However, we can st
obtain the first and second moments ofP(V,s) in terms of
the Legendre polynomial expansion ofSs(V•V8) @4#. For
example, the mean follows from Eq.~77! as

d^V~s!&
ds

52S̄^V~s!&,

whereS̄5Ss@12^m&#.
In this case the number densityF(x,s) still satisfies the

same modified diffusion equation@see Eq.~25!# as in the
case of Fokker-Planck description:

]F~x,s!

]s
52^V~s!&•

]F

]x
1“•D~s!•“F. ~78!

Since the solution of this equation in an infinite medium
Gaussian, the approximation inherent in this equation,
keeping the terms up to second order in the coupling par
eter «, is referred to as the Gaussian approximation in R
@4#, and introduced as a model in the moment method.

When the scattering is forwardly peaked, the one-sp
transport approach reduces to the Fokker-Planck descrip
However, the latter description takes into account ene
degradation in scattering in the continuous slowing-down
proximation.
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In the limit of isotropic scattering, we expect the sma
coupling approximation, based on Eq.~78!, to be not as ac-
curate as the ordinary diffusion approximation with the fi
collision distributed source representing the effect of the
tial monodirectional beam.

In conclusion, the Fokker-Planck description in finite m
dia with the weak-coupling expansion seems to be w
suited to the study of electron and photon transport, es
-

t
i-

-
ll
e-

cially near boundaries when the scattering is forwar
peaked.
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