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Fokker-Planck description of particle transport in finite media: Boundary conditions
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Using the Fokker-Planck description of particle transport, which is valid when the scattering is forwardly
peaked and the energy loss per scattering is small, the energy-dependent transport of electrons and photons in
finite homogeneous media is studied. Treating the coupling between the angular and spatial dependence of the
angular particle density as a small parameter, a modified diffusion equation for the particle number density
F(x,s) is obtained by a systematic perturbation expansion, and the appropriate boundary conditions on the
outer surface of the medium are developed. As an application, the transport of photons in a half-infinite
medium, for a pulsed coherent laser beam uniformly incident on the interface, is studied analytically and
numerically. The spatial distribution of photons in the medium, as a function of the distance from the interface
at different path lengths, as well as the path length distribution of the reflected photons, are obtained. Due to
its importance in diffusive wave spectroscopy, the Laplace transform of the path length distribution of the
reflected photons is calculated, and compared with the result obtained with the diffusion theory that assumes a
fictitious isotropic pulsed light source at a distarzgdrom the surface of the medium. By matching the initial
slopes, a value 1.67 is found forz,, which enters the diffusion theory as an adjustable parameter.
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I. INTRODUCTION “
s<E>=J de'fdn'<E—E'>ES<EHE’,ﬂ‘ﬂ’>, (@)
0

The conventional linear Boltzmann equation can be cast
into the Fokker-Planck form when the scattering is forwardly

N o 1
peaked, and the energy change in scattering is grhhll E(E):zq-rf dE’f du(l—u)S(E—E",u). (5
0 -1
J
r n(x,gE,Q,t)+v(E)Q-Vn We have shown in an earlier pag@i, which will henceforth
be referred to as “l,” that, with the initial condition
9 n(x,E,Q,0)=6(E—Ey)f(x,Q,0), theangular density can
=—v(E)Z4(E)n+ —= [S(E)v(E)n] be expressed as

B u(E)§(E) o n(x,E,Q,t)=8(E—&(1))p(E)f(x,Q,1), (69

1 1

2 @ wherep(E) is the nonabsorption probability defined by
wheren(x,E,Q,t) is the energy-dependent angular particle Eo S (E

density; S(E) is the energy loss per unit distance, or the p(E)=ex —f d SE)

stopping power. ,(E) is the macroscopic absorption cross

section;2(E) =2 (E) — 2 ,(E) whereX(E) is the transport T ,

cross sectionl? is the total angular momentum operator —&x _fodt o(t")Z4(t) ], (6b)
defined by

where v (t)=v(£(t)) and 3 4(t)=3,(&(t)). The function

2 | (1—u?) — e — is the solution of
L (9/.1,(1 M)&M+1_M2&¢2: (2)
dé&(t)
the vector€) is the unit vector in the direction of particle T —v(6)3(8), (73

velocity; v (E) is the particle speed corresponding to the par-
ticle energyE; u is the cosine of the polar angle describing with the initial condition£(0)=E,. It is a known function of
the unit vectorQ, and ¢ is the corresponding azimuthal time. It proves convenient to rewrite this equation in terms of
angle. The sign of .2 is chosen such that its eigenfunction path lengths(t) usingds=uv(t)dt as
Y\m(), i.e., the spherical harmonics, satisfy

dé&(s)

L2Yim(2)=1(1+1)Y (). 3) 45— SO, (7b)

The definitions ofS(E) andg(E) in terms of the differential which is consistent with the meaning 8{E) as the energy
cross section are loss per unit distance. Henceforth, we shall use the path
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length variables instead of the time variablg these are ary conditions consistent with the approximations used in the
transformed into each other througls=uv(t)dt, which is  derivation of Eq.(10). This is the main theme of this paper.

clearly just a change of variables. The functibfx,(,s), The organization of the paper is as follows. In Sec. Il we
which is introduced in Eq(6), satisfies present an alternative and more physical derivation of Eq.
(10) without resorting to the general and abstract method of
9 g(s) elimination of fast variablegéthe direction variabl€? in our
7 [(x2,8)+ Q- Vi=——— L2f, (8)  application, which was presented in I. Such a simpler deri-

vation is now possible because we already know from | that
Eq. (10) is obtained by ignoring the terms of third and higher
order in a power series expansion in the coupling operator
L,=—Q-V. However, the purpose of Sec. Il is not only to

where 2(s)=3(&(s)). The elimination of the energy vari-
able in Eq.(1) enables one to reduce the original Fokker-
Planck equation for the full energy-dependent angular deng;q\ide an alternative derivation of a known result: the new
sity n(x,E,€,s) to the simpler form given in Eq(8) for  erivation is based on an expansionf6t,€,s) into spheri-
f(x,€,s). The latter can be interpreted as the one-speeds| harmonics, which enables us to calculate the partial cur-
Fokker-Planck equation for the angular particle density inrents needed to establish the appropriate boundary condi-
the absence of absorption. In many problems one is not igons. The details of these calculations, and the boundary
terested in the angular information, and tries to obtain an,ngitions themselves, are presented in Sec. Ill. Section IV
approximate equatiofdiffusion approximatiopfor the num- jjystrates an implementation of the boundary conditions in
ber density defined by the case of a half-infinite medium, where the angular distri-
bution of the albedo current is explicitly calculated. The im-
F(x S):j dQ f(x,Q.5). ©) plication of the results of Sec. IV in DWS, as well as con-
' Y clusions, are discussed in Sec. V.

In I, we have shown, by using an elimination procedure Il. AN ALTERNATIVE DERIVATION OF EQ. (10
based on the projection operator formalism in which the cou-

pling operatolL ;= — Q- V in Eq. (8) is treated as small, that ~ We start with Eq(8) and rewrite it as

F(x,s) satisfies the following diffusion equation up to sec- 2 (x.Q.9)

ond order inL: o
as

PF  PF (11)

ax? - ﬂyz)' where we have put the smallness parametarevidence, as
(100 suggested by the derivation in I. We solve this equation as-

suming that the initial angular distribution is separable in

In deriving this equation, the initial condition for the angular space and angle:

density is taken to be monodirectional, i.ef(x,€,0)

= 6(Q— Qo)F(x,0), and thez axis is chosen parallel . f(x,€,0)=P(Q,0F(x,0), (12

In this equationD,(s) andD+(s) denote, respectively, the . I e

s-dependent paraHIIeI and transverse diffusion coefficientsVhere P(£2,0) is the initial angular distribution, and hence

D,(s) characterizes the diffusion of particles parallel to the"0rmalized

initial direction, Q,, whereasD(s) characterizes diffusion

on a plane perpendicular €@,. The expressions dd(s), f dQ P(Q,00=1.

D+1(s), and m(s), which are presented in I, as well as an

earlier papef3], will not be needed in the following deriva-

tions.

The diffusion equation in Eq10) was solved in | and in
Refs.[3,4] in an infinite medium, and its application to dose
calculations in tissue resulting from an electron beam was F(X,S)=J dQ f(x,9,s). (13
discussed3,4]. The possibility of using Eq.10) in diffusive
wave spectroscopy(DWS), where the number density The separability assumption in E(L2) is satisfied in the
F(x,s) is interpreted as the path length distribution of pho-problems we will be interested in. The angular distribution
tons arriving at the detector, was also mentioned in . f(x,€,s) cannot remain separable fer-0 because of the

It is clear that, in such applications, the finiteness of thestreaming operatoeQ-V in Eq. (11), which couples the
medium in which the particles are transported must be takeangular and spatial evolution &fin the absence of this term,
into account: in the case of dose calculations, an electrothe angular distribution would evolve maccording to
beam is directed to the tissue from outside; in the case of
DWS the intensity correlations of either the backscattered
light, or of the transmitted light through a slab are consid-
ered. Therefore, for realistic applications of E40), we
have to obtain solutions in a finite medium, such as a semiwhich is easily solved as
infinite or a finite slab. To obtain solutions of EQLO) in )
finite media we have to first establish the appropriate bound- P(Q,s)=e 120GLp(0 0), (15a

_‘]_ _
+eQ-Vi(x,Q,5)=— > S(s)L%f(x,9Q,s),

IF(x,8) aF+D &2F+D
g5~ ~M(s) - +Dy(s) =z +D+(s)

The F(x,0) is the initial value of the spatial distribution, or
the scalar number density, defined for by

d 1= ., B
Is P(Q,s)+ > 2(s)L°P(Q,s)=0, (14
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where J(x,8)=(Q(s))F(x,5) +Ip(X,S). (19

I =y The first term in Eq(19) represents the effect of the initial

0(s) fods (s, (159 angular distribution, whereak,(x,s) accounts for the usual
diffusion current, and satisfies Fick's law with a®

We mention for future use that, when the initial angular dis-dependent diffusion constant, as we show below.

tribution is isotropic, i.e., wherP(Q,0)=1/47, P(Q,s) Since the first term in Eq17b) ats=0 is exactly equal to

= 1/4q for all s becausé.?1=0. The expression dP(€,s)  f(x,Q,0) by constructionJy(x,0)=0. In order to obtain

for initially monodirectional particles, i.e., folP(€2,0)  equations folF(x,s) andJp(x,s) for s>0, we substitute the

=5(Q—Qy), will be given in Sec. lli[cf. Eq. (33)]. The  expansion in Eq(17b) into the Fokker-Planck equatidfl),

first angular moment oP(£2,s) follows from Eq.(153 as and take the zeroth and first angular moments of the resulting
equation yielding

(Q(s))=e"9(Q(0)). (16)
IF(X,S)
In obtaining Eq.(16), we have used the fact thaf is self- rra —eV-[(Q(9)F(x,8)+Ip(x,9)], (20
adjoint, andL2Q=2Q.
Returning to the nonseparability 6fx,€,s) for s>0, we
dIp(X,S)

have found thatf(x,€2,s) is separable for als>0 in the —+§(S)JD(X,S):_sg(p(s).vp(x,s)_ (21
absence of the streaming term in the Fokker-Planck equation, dJs
and hence can be written &&¢,,s)=P(£,s)F(x,0) at all ) o o .
times. In order to take into account the coupling between thd Ne first equation is the continuity equation, and exact. The
evolution ofx andQ, caused by the streaming operator, weS&cond equation is approximate because we have neglected
expandf(x,Q,s) — P(Q,s)F(x,s) into spherical harmonics N its derivation the terme(£)(s))V - Jp(x,s), which is of
as follows: second order in the coupling constanbecauselp(X,s) it-

self is of ordere. In Eq.(21) we have introduced the variance

matrix S®(s), which is defined by

f(x,Q,5)=P(Q,s)F(x,s)+A(X,s)+ % Jp(X,8)- Q

+ (higher-order terms (179 5¢(S):J dQ QQP(Q,5)—(Q(8)(2(s))

whereF(x,s), A(x,s), andJp(X,s) are the expansion coef- =(€(s)Q(s)) = (Q(s) )(€(9)), (22)
ficients to be determined, and the higher-order terms in the o )

expansion consist of second- and higher-order spherical hafd was calculated explicitly earlif2,3]. We do not need to
monics. Integration of Eq(17a over angles then yields Present the expression @kb(s) in the subsequent deriva-

A(x,s) =0, so that the expansion reduces to tions.
Equation(21) can be solved fodp(x,s) as

3
f(x,Q,5)=P(Q,5)F(x,s)+ — Jp(X,)- Q s
4 P JD(x,s)z—sf du e [®©E-0Wlsd(u)- VF(x,u),

0

+ (higher-order terms (17b (23

Our strategy can be outlined as follows. In Efi7b), the first \yhere we have used the initial conditidp(x,0)= 0. Substi-
term is of zeroth order im. The remaining terms are at least ytjon of Jp(x,s) from Eq. (23) into the continuity equation

of first order ine, because they vanish wher=0. We de- (20 yields an integro-differential equation for the number
termine only the second term in the lowest ordersjnal- densityF(x,s):

though the terms involving higher-order spherical harmonics

also contribute td(x,{2,s) at the same order. The reason for jF(x )

neglecting the contributions of higher-order terms is that our prami e(Q(s))- VF(x,s)
aim in this paper is only to modify and extend the diffusion

approximation in order to include the initial ballistic evolu- s
tion of a monodirectional particle beam. The inclusion of the +82j du e [®E=0Wly. 5d(u)- VF(x,u).
contributions from the higher-order spherical harmonics 0
would lead to a systematic extension of thg approxima- (29
tion.

The Jp(x,S) can be related to the usual current densityWe can obtain either the diffusion equation or the telegra-
J(x,s), which is defined by pher's equation from Eq24): to obtain the diffusion equa-

tion, we treat-(x,u) in Eq.(24) as a slowly varying function

of u, replace it byF(x,s), and take it outside tha integral.
This step is justified because the Taylor series expansion of
F(x,u) abouts containsdF(x,s)/ds, which is at least of

by multiplying Eqg.(17b) by ©, and then integrating ove®  ordere according to the continuity equatid@0). With this

we arrive at simplification, Eq.(24) reduces to

J(x,s)zf dQ Qf(x,Q,s), (18
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IF(X,s)
Js

= —&(Q(s))- ‘;—i+82V.D(s)-VF, (25) <ﬁ-9(s)>,=—ﬁ 4 GO R-QP(Qs). (32D

which is the desired modified diffusion equation in matrix In the Specia' case of an isotropic initial distribution,
form. In Eq. (25, we have introduced the diffusion matrix p((, s)=1/47, and hence we obtain- Q(s)). =%, so
D(s) as that Eq.(31) reduces to the conventional expression of the
s partial currents in the conventional diffusion theory.
D(s)= J' du e [0-0Wlsp(y). (26) As another limiting case, we consider initially monodirec-
0 tional particles so tha®(£2,0)= 6(Q—€;), and choosa in

. , . the direction of Q4. In this case,(n-Q(0)),=1, and
The calculation ofD(s), also, was presented in two earlier (R-Q(0))_=0. Fors+0, we first obtainP(2.s), given in

papers2,3]. Equation(25) is the same as E10), but with-  g¢ (154 with the initial distributionP(£2,0)= (2~ Q).

out the assumption that the initial distribution is monodirec-peresenting thé function in terms of spherical harmonics,
tional. The accuracy of the diffusion equation in powerg of

is explicitly displayed in Eq(25). The simplification used in we obtain
obtaining Eq.(25) is equivalent to approximating the diffu- .
sion current)p(x,s) in Eq. (20) by the usual Fick law P(Q,S):;n e” (M2 DY (0)Y(Qo)
Jo(X,8)=—¢eD(s)- VF(x,s). (27) o
_E 21+1 —(1/20(s)I(1+1)
In order to obtain the telegrapher’s equation, we differen- T &y Ax Pi(2-Qo)e . (33

tiate Eq. (24) with respect tos, and then eliminate the
memory integral in it in favor of the first time derivative of [we point out for future reference thR(£2,s) becomes iso-

F(x,s). After some algebra, we obtain tropic in the limit of ® (s)—, because in this limit only the
2F s =0 term survives in Eq(33), and henceP(,s)— 1/44.]
;S);*S) +3(s) f;;'s) —e2V. () VF(x.5), To calculate(i- (s)) . , we write Eq.(323 explicitly
(28)

1 2
| (-0, = [anu[ TdoPrs. @
where®(s) =(Q(s)€(s)) [see Eq(22)]. Since we shall not 0 0
use the telegrapher's equation in this paper, we do not . . o
present the intermediate steps of its derivation. To perform the integrals in Eq34), we choosen in the
direction of Q,, so that in Eq.(33) Q- Qy=pu, the polar

IIl. PARTIAL CURRENTS AND BOUNDARY CONDITIONS angle ofQ2, and obtain

The partial currents for a given directionare defined in A 5o21+1 —amesia+y [*
the usual way by integratingi- Qf(x,Q,s) over a half <n~ﬂ(s))+=|20 5 © Jo du uPi(u).
range: 35)

Ji(x,s):J dQ f-Qf(x,Q,s) (299  We verify in passing the value d¢h-Q(0)), ,
Q>0
R 1 o o21+1
and (7-000). = [ du w3, == Piw
I (x,s :—f dQ A-Qf(x,Q,5).  (29b !
(x.) Q<0 ( ) (29 :fo du pé(u—1)=1.

Substituting the expansion ¢{x,€,s) obtained in Sec. I,

ie., The integral in Eq(35) is known[5],
f(x,Q,8)=P(Q,s)F(x s)+iJ (x,8)-Q, (30 fld Py( )—ﬁ ! (36)
o T A TR o H T r G ir 2+ 12)”

into Egs.(29), we obtain We observe from this formula that the integral vanishes for

Ji(x,s)=<ﬁ-ﬂ(s))iF(x,s)i%ﬁJD(x,s), (31) all odd| except forl=1, i.e., for oddl
~ 1
where(n- Q(s)). denote J'O dp uPy(p)=161,

(n-Q(s)) = J’*n4g>odﬂ n-QP(Q,s) (329 which can be verified directly by observing thaP,(u«) is

even wher is odd, and extending the range of integration to
and (—=1,1). Hence, Eq(35) can be written as
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<ﬁ.9(s)>+:l e*®($)+ﬁ 2+1 INCIDENT BEAM

2 8 ieven=0 ['(3—1/2)[(2+1/2) :

e~ OO+ (37)

The alternating series in E@37) is rapidly convergent. =0 > X
To demonstrate this assertion, we consider the limitsof ’
=0. Since we know thatn-Q(0)), =1 in this limit, we N
must have
Vm o |
. 2+1 1 VACUUM MEDIUM

8 I =0 3_ - 2°
(even I'G=-19I'(2+172) FIG. 1. Normal incidence on the interface of a half-infinite

The sum of the first three terms is 0.467, which is indeedf@MPle-

close to 0.5.
We now calculatén- Q(s))_ . Since DH(S):%e*@)(s)fsds/[e('@(sr)_3e*®(5’)+26*2®(5’)].
0
(h-Q(s))=e 9 (40)
and (n-Q(s))=(n-Q(s)), —(N-Q(s))-, we obtain We shall solve Eq(39) for a burst of monodirectional
(n-Q(s))- as particles(one particle/crf) in the x direction, introduced at

x=0" and s=0. This source condition corresponds to an

(h-(s)-=(N-Q(9)) —(A-Q(s)) (383 {risial angular density (x, s,5=0)= 8 — 1)8(x—07). In-

or explicitly as tegrating ovet;u,,+we obtain the initi_al condition foF (X, s) as
F(x,00=6(x—0"). The appropriate boundary conditions
A 1 * are F(x—o,8)=0 at infinity, andJ, (0,s)=4(s) at x=0,
(n'Q(S)),=——e‘®<S)+ﬁ > ie.,
2 I(even=0
1 JF(x,s

SR M(9F(08)~ 5 D(s) oD —5(s), (419

C(3-1/2T(2+1/2) x=0

(38D  where m, (s)=(X-Q(s)); , which is defined in Eq(37).
This condition shows thaE(0,s) has a singularity as=0,
which can be removed by introducing(0,s)=F(0,s)
— &(s). SinceD(0)=0 andm_(0)=1, the boundary condi-

%ion for the nonsingular part becomes

We verify, as a check, that botfn- Q(s)). approach; in
the limit of ®(s)—«, because in this limitP(L,s) be-
comes isotropic as we have already pointed out after E
(33). Indeed, a®d(s)—», the first terms in Eqs(37) and

(38b) vanish, and only the terh=0 survives in the second 1 IF1(X,5)
terms. The latter ist becausel'(3)=\#/2 andT'(2)=1, m.(s)F1(08)— 5 D(s) — —| =0. (41D
proving the assertion. x=0

The boundary condition for a specified geometry can no
be implemented in terms of the partial currents in the usua
way, as Sec. |V demonstrates.

t is clear thatF,(0,s)=F(0,s) for all s>0.
The solution of Eq(39) is constructed by first taking its
one-sided Fourier transform with respectto

IV. IMPLEMENTATION OF THE BOUNDARY (7E(k s)

CONDITION IN A SEMI-INFINITE MEDIUM prami —[D(s)k?+ikm(s)]F(k,s)+R(k,s), (42)

We consider a semi-infinite medium, and a normally in-
cident beam of particles on its interface with vacuum as inwhere
dicated in Fig. 1. Since the problem is one dimensional, the

diffusion equation to be solved is E(k,s)=J dx F(x,s)e k%, (433
IF(x,5) IF 5 2 39 °
o5~ M(s) - +D(s) =7, (39 1 e |
F(x,s)=2—J dk F(k,s)e’, (43b)
where TS
m(s)=(X-Q(s))=e ", and

andD(s)=D(s). The parallel diffusion coefficient was cal- R(k,s)=[m(s)—ikD(s)]F(0,s) —D(s)dF(X,S)/dX|x—¢.
culated earlief2,3]: (449
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Clearly, R(k,s) contains the unknown boundary conditior_ls which is equal toEx(k,s)/Ex(k,s’). One can easily verify
F(0,) and gF(x,s)/dx|x—o. The latter can be expressed in that F_(k,s) is the infinite medium solution of Eq39) in

terms ofF(0,s) by invoking the boundary condition in Eq.
(41b):

R(k,s)=[m(s)—2m(s)—ikD(s)]F(0,5)+245(s).
(44b)

Sincem(s)=m_(s)—m_(s), we further simplify Eq.(44b)
as
R(k,s)=—[M(s)+ikD(s)]JF(0,s)+248(s), (440
where we have introducdd (s) =m_ (s) + m_(s), which is
explicitly given by
- 21+1
M(s)= ﬁ

e~ (120(9(1+1)
4 even=0 T(3-1/2)T(2+1/2)

(49)

[see Eqs(37) and(38b) for m, (s) andm_(s)]. The substi-
tution of Eq. (440 into Eq. (42) results in the following
inhomogeneous equation:

aE( k,s)

o= ~[D(s)k*+ikm(s) IF (k.s)

—[M(s)+ikD(s)]JF(0,)+25(s). (463

We eliminate the singular part d¥(0,s) by using F(0,s)
=F,(0,8) + &(s) to obtain

oF(k,s)
Js

= —[D(s)k2+ikm(s)]F(k,s)

—[M(s)+ikD(s)]F1(0,5)+ &(s). (46b

We should emphasize here that becaus® is to the left
of the source located at=0"*, F,(0,s) is not the limit of
F(x,s) asx—0 from the right. This discontinuity, which

does not arise in ordinary diffusion theory, is due to the fact

that D(s)—0 rapidly ass— 0, reflecting the initial ballistic

motion of the particles in the modified diffusion equation

(39.

The & function in Eq.(46b) determines the initial condi-
tion for F(k,s) asF(k,0)=1, which is consistent with the
initial condition F(x,0)=8(x—0%). The solution of Eq.
(46b) with this initial condition is then obtained f&>0 as

E(k,s)=Ex(k,s)—fsds’gx(k;s,s’)
0

X[M(s')+ikD(s')JF1(08"), (47
where
F.(ks)=exp{—[3oX(s)k2+ikm(s)]}, (483
and
G..(k;s,s') =exp(—{3[o%(s)— o¥(s) IK?
+ik[m(s)—m(s")}). (48b)

Fourier space with the initial conditioR.,(k,0)=1, corre-
sponding to a monodirectional unit pulse source of particles
atx=0. In Eg.(48) we have introduced

m(s)= f:d s'm(s’) (49

and

az(s)zzf:ds'o(s'). (50)

It is clear thatm(s) is the mean particle positiofx(s)) of
the pulse for the case of an infinite medium, arfgs) is the
variance(x?) —(x(s))? of the particle positions for an infi-
nite medium. The properties of this solution were discussed
in detail elsewherg¢2—4.

The inverse Fourier transform of EGL7) gives the semi-
finite medium solution as

F(x,s)=F.(x,s)— fsds’[Gx(x;s,s’)M (s")
0

+G.(x;s,8")D(s")]JF1(0s"), (51)

where

[x—m(s)]?
Fm(X,S)ZmeX _TO'W s (528)
1
(2m)™o*(s) - o*(s")]"
{x—[m(s)—m(s")]}?
2[o*(s)—a*(s)] |’

G.(x;8,8")=

Xexp —
(52b)

and G/ (x;s,8')=3dG.(x;s,s')/dx. TheF(0,s) in Eqg. (51
is still unknown.

By evaluating Eq(51) at x=0, we obtain a consistency
relation, from whichF1(0,s) can be obtained,

Fl(O,s)sz(O,s)—f:ds’[Gm(O;s,s’)M(s’)

+G.(0;s,8")D(s')]F4(0s’), s>0. (53
Although not in a closed form, Eqé&1) and(53) express the
semi-infinite solution in terms of the known infinite medium
solution.

OnceF(x,s) is obtained by solving Eqg51) and (53),
the partial curreni_(x,s) can be obtained from

JF(X,S)
ox

J,(x,s)zm,(s)F(x,s)+% D(s) (54
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The backscattered curredt (0,s) is of particular interest in o
diffusive wave spectroscop}6]. Evaluating Eq.(54) at x 4
=0, and combining the result with the boundary condition in

Eg. (413, we obtain 25

J_(0,5)=M(s)F(0,s)— 8(s)=M(s)F;(05s), (55

where M(s)=m, (s)+m_(s), and is given in Eq.(45). e
Thus it is sufficient to solve only the integral equati@) E

for F4(0,s) in order to determine the reflected current  -6f
J_(0s9). 7t

One can verify, as a consistency check, that
-8r

J dsJ (0s)=1 -1
0

-10
-1

In(s)

as it should be because only one particle is introduced into
the medium initially. Since it is normalized to unity, (0,s) FIG. 2. The nonsingular part of the distribution functién(s),
is the path length distribution of backscattered photons.  in the finite mediuntsolid line), compared with the infinite medium
solution,F..(0,s) (dashed-dotted linefor path lengths up to 508/
A. Numerical computation of F(x,s) The asymptotic behavior of both curves is also indicated by dashed

We must first solve the integral equation, E§3), for and dotted lines.

F.(s)=F(0,8). To do so, we note thdt,(0)=0 and inter-
polateF,(s) on a grid ofs values{sy,s;,...} using an ex-
pansion in a cardinal basis Sgi(s) as

Once theF, are obtained, it is also possible to compute

k-1
S
* Fl(X,Sk):Foc(X,Sk)_z Fif de'K(XJSk,S')Ci(S/),
Fi(s)= 2, FiCi(s), (56) = Jo
i=0 (60)
where Ci(s;) = 6;; and Fi~F(s;). Substitution of this ex- py evaluating some integrals numerically.
pansion into Eq(53) results in a system of linear equations ~ \ye select the piecewise-constant cardinal basis
to solve for the coefficients;,
o s c 1, si=s<s§;.4 6
k i(s)= . 1
Fk=Fx(0.sk)—EO Fifo ds'K(0;s¢,s")Ci(s), (57) =10 otherwise. 6D
=

This choice leads to a truncation error in the integral equa-
tion that is of orderAs®? whereAs=min(s.;—S) is the
m(s)—m(s’)—x mesh spacing of the grid. The fractional power arises be-
W cause of the square-root singularity in the kernekas:s
(58) #0. Because of this truncation error we can afford to ap-
proximate the integrals in E¢59) with a similar error. This
is the kernel from Eq(51) written in a slightly different can be done by changing the variable of integration to
form. a?(s'), averaging the regular part of the integrand over an
If the interpolation functionsC;(s) are selected so that interval [o?(s;),o(si+1)], and performing the integral of
Ci(s)=0 for s<s; then, using=;(0)=F,=0, the system of the singular part exactly. Only &—0 is any care required,
equations, i.e., Eq57), is lower diagonal, and can be trivi- but in this limit the exponential goes to zero very rapidly, so
ally solved forF, as there is in fact no difficulty there.
Figure 2 shows the functiofr{(s)=F4(0,s) for 0<s
k-1 S <10 (solid line); also shown, for comparison, is the function
F..(05)— > Fif ds'K(0;sy,s")Ci(s’) F..(0,5), which is the infinite medium solution, and is given
Fo= -1 0 . (59 analytically by Eq(528. In this figure, and in all that follow,
14 fSkds’K(O'sk s')Ci(s') 2. is taken to be independent of path length, and path length
0 a ' itself is measured in units of 1/ and hence unitless. One
_ _ . can show analytically thaF.(s) and F,(s) approach as-
ComputingFy for k=1,2,3 ... isthen simply a matter of ymptotically to, respectively,/3/4m/s'? and c/s¥? as s

where

K(x;s,8')=G.(x;s,8")|M(s")+D(s’)

numerically computing the values of the integrals — o0, which are also plotted in the figure with~2.04. The
numerical value ot is obtained through curve fitting. It is
des’K(O'sk s')Ci(s'), k=1,2 observed that-,(s) attains its asymptotic behavior more
0 T amnE R slowly thanF..(s) does.
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FIG. 3. The variation of the total number of partichés) in the FIG. 4. The variation of the spatial probability distribution,

medium as a function of the path length P(x;s) as a function of the distance from the interface for four
values of the path length

FromF4(s) we can compute all other quantities of inter-
est, such ag=(x,s), which is given in Eq.(60), and the This can also be expressed in termsFg{s) directly. Mul-
probability distributionP(x;s) of finding a particle, which is  tiplying Eq. (39) by x, integrating overx, and evaluating
introduced into the medium at=0 ats=0, in a unitinterval  various integrals by parts yields
aboutx after having traversed a path length

d
s N(s)(x)(s)=m(s)N(s)+D(s)F(0s). (65

1
P(x;s)= W F(x,s), (62)

In the last term we usedD(s)F(0,5)=D(s)[4(s)
whereN(s) is the number of particles remaining in the me- +F,(0,5)]=D(s)F,(0,s) andD(0)=0. Integration ovess,
dium at a path length, i.e., and using(x)(0)=0 yields

«© 1 s s
N(S)=f0 dx F(x,s) <x>(s)=W fods'm(s')N(s'Hfods'D(s')Fl(s')}.

(66)

S
:1_fods M(s")F4(s") Figure 5 shows(x)(s) as computed from thé&,(s) pre-

sented in Fig. 2. We observe from this plot that those par-
ticles that remain in the medium penetrate more and more
deeply, with their mean position traveling initially at almost
the particle speed. Indeed, for smslithe first term in Eq.

:fwds’M(s’)Fl(s’). (63

The second line, which expressiigs) directly in terms of

Fi(s), follows from the expression of the outgoing partial 30
current given in Eq(55). Figure 3 shows a log plot dfi(s).
In this plot we see that at large path leng#ithe number of o5t ofs) -7~
particles in the system decays algebraically; fitting a line to JPrae
this data suggests tha(s)~s™ %5 Using the asymptotic P
behavior ofM (s)F(s)— c/2s*? for larges in Eq. (63), we 20r g
indeed find thatN(s)— c/s¥? wherec~2.04. PR <*>(s)
The variation of the probability distributioR(x;s) as a 15+ el ]
function of distance from the interface is presented in Fig. 4 I
for four values of s. We note in this figure that |
lim,_,oP(x;s) # F1(0,5)/N(s) for smalls. This is because of /’
the presence of the pulsed soudx—0")8(s), the influ- yy
ence of which persists even fer-0. [See the comment fol- 5r 7 ]
lowing Eq. (46b).]
It is also of some interest to compute the mean position of

the particles in the medium 0 200 400 . 600 800 1000
(x)(s)= fxdx xP(x;s). (64) FIG. 5. The variation of the mean particle positi¢x)(s) and
0 the standard deviationr,(s) with path lengths.
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(66) dominates, and sincH(s) and m(s) tend to unity as
s—0, we obtair{x)(s)—s. The behavior ofx)(s) for large
scan also be determined from E6): since the integrals on
the right hand side are convergent, it ilN{$) that dictates
the asymptotic behavior di)(s). Hence, one find¢x)(s)
—(K/c) /s, where

K=fwds n(s)N(s)+des D(s)F4(s),
0 0

andc~2.04. This behavior ofx)(s) is very different from
the mean particle position in an infinite medium solution,
which asymptotically approachéz) =1, the penetration dis-
tance, as discussed in an earlier pd@ar This difference is
mainly due to the fact that in the finite medium there are very
few particles traveling to the left, because those particles
quickly leave the medium and cease to contribute to the
mean position. It is interesting to note that the first spatia#
moment of the particle densitlf,(x,s), which is equal to
N(s)(x)(s), approaches the value~1.56.

Figure 5 also shows the variation of the standard devia
tion oy (s) ={{[x—(x)(s)]%)},Y? as a function of. The ex-
pression of the second moment)(s) is obtained by mul-
tiplying Eq. (39 by x?, integrating overx, and evaluating
various integrals by parts as it was done to obtain Eg§S).
and(66); the result is

2 s
(x®)(s)= N(s) deS’[m(S’)N(S')<X>(S’)+ D(s")N(s")].

(67)

For smalls, the first term dominates. Sindé(s) and m(s)
tend to unity, and(x)(s)—s as s—0, we find (x?)(s)

—.82, ando3(s)—0 in this limit. This is expected because 91(9)-

the particles predominantly stream for smallFor larges,
the second term in Eq67) dominates; this diverges as/3
becauseD(s—x)=3 and N(s—®)—c/ys. Thus, since
(x)(s)—(K/c) s as s—o, the variance behaves ag(s
—o)—[4—(K/c)?] s~0.75% implying a diffusion motion
of particles about their mean position. The numerical value
0.75 is close to, as one expects from the mean square
displacement Ps due to diffusion with the diffusion coef-
ficient 3.

B. Application to diffusive wave spectroscopy

The path length distributiorP(s) of the backscattered
particles in the absence of absorption in the medium is equal
to the outgoing partial currer_(0,s) at the interface, i.e.,

P(s)=M(s)Fy(s). (68)

The variation ofP(s) with path length is shown in Fig. 6.
The probability that a particle will emerge from the medium
with a path length less thas+ 0.5 is virtually zero due to the
forwardness of scattering. The probability peaks at alsout
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FIG. 6. The variation of the path length distribution of the re-

lected particles as a function of path length

01(q) = f:ds & Tp(s),

._tion is expressed in terms of the Laplace transforniP (f)
[6,7]. Figure 7 shows the variation of

(69)

with g. One can verify analytically thag;(q) behaves for
smallq as

(70

This tendency is indicated in Fig. 7 as the initial slope of

Although the actual light source in an optical measure-

0

ment is a coherent laser beam, which is uniformly incident
on the interface of the medium, the calculation of the path
length distribution by using the diffusion theory in diffusive

-1+

~

e e g

0.5

1

172
q

1.5

2

=2.2 with a value of approximately 0.08, decreases very giG. 7. The variation ofg;(q), the Laplace transform of the

gradually thereafter, approaching asymptotically cis®2.

path length distributiorP(s), with the Laplace variable (solid

This implies that most of the particles are backscattered aftafurve. The dotted curve showg;(q) as calculated with the diffu-

having traversed path lengths larger ttan2. In diffusive

wave spectroscopy the measured intensity correlation funct z,=1.67 from the interface in the medium.

sion theory assuming a fictitious isotropic plane light source located
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wave spectroscopy assumes a fictitious isotropic light sourcehere(n- (s))-. are given by Eqs(37) and(38b). In par-
located at some distan@g inside thesample The value of ticular, the reflected current in the case of the semi-infinite
Z, is taken to be approximately the transport mean free patimedium as discussed in Sec. IV is obtained from @§) as

to allow the coherent light entering the medium to become

diffusive as a result of a sufficient number of collisions. J_(0E,s)=6[E—£&(s)]p(s)v(s)M(s)F1(0,s). (74)
When the reflection of the photons from inside at the inter-

face back into the medium is neglected, the diffusion theoryV& Plan to use these results, in the future, to calculate the
yields [6,7] the following expression fog,(q): path length distribution of reflected photons, which enters in

the interpretation of the intensity correlation function of the

e~ 2030 reflected light in diffusive wave spectroscopy.
g.(q)— (diffusion theory. (71 The weak-coupling expansion described in this paper is
1++(413)q also applicable to the one-speed transport equation:
By matching the initial slope-[z,+ (3)]v3 of this expres- d 0.9+ e0.V
sion to —[1+(%)]v3 of Eq. (70), we obtainzy=1+(%) g5 N8 +8Q2-Vin
=1.67.
The comparison of the results fgr(q), obtained with =_§tn+J dQ'3(Q-Q)n(x,Q',s), (75

the modified diffusion theory developed in this paper, and
those obtained with the diffusion theory are shown in Fig. 7. L _
The difference is due to the fact that the modified diffusionWher_es_Ut is the path length, andlt—EaTEs. The ap-
theory treats the transition from the initial coherent behavimpmxImate solution can be constructed as in &),

to the diffusive regime more accurately than traditional dif- 3
fusion theory with an isotropic source inside the medium.  n(x,€,s)=p(s)| P(Q,s)F(x,8)+ -— JD(x,s)~Q},
We do not pursue this point any further, because we intend 4m

to apply the modified diffusion theory to a slab sample with (76)
finite thickness, and investigate the angular dependence qof _ _ ; ;

the intensity correlation function of the reflected light at the9vherep(s)—exp[ 245}, andP(£2,s) s the solution of
front surface, as well as that of transmitted light as a function

of the slab thickness in a separate publication. rr P(Q,s)= —ESP(Q,S)+J dQ'3Z(Q-Q)P(Q,s)

(77

instead of Eq(14). This is the only difference between the

Fokker-Planck and the one-speed transport descriptions.
hereas the exact solution of E(l4) is available in a
losed form, as presented in E45a), an analytical solution

of Eq. (77) is not readily forthcoming. However, we can still

obtain the first and second momentsRi{f(2,s) in terms of

the Legendre polynomial expansion B{(Q- Q') [4]. For

example, the mean follows from EG(7) as

d(€x(s))
ds

V. DISCUSSIONS AND CONCLUSIONS

Once F(x,s) is obtained approximately by solving the
modified diffusion equation25) in a specified geometry
with the appropriate boundary conditions, we can construc
the full solution of the original Fokker-Planck equati¢h
for the energy-dependent angular number density
n(x,E,Q,t), by substituting the expansion d&{x,{2,s) in
Eqg. (12) into Eq. (6a):

n(x,E,Q,s)=S(E—&(s))p(s)

3 =-3(Q()),
X|P(Q,s)F(x,s)+ yp. JD(x,s)~ﬂ},
whereX=3 [1—(u)].

In this case the number densiB(x,s) still satisfies the
where the functions(s), p(s), P(Q,s), andJp(x,s) are  Same modified diffusion equatidrsee Eq.(25)] as in the

given, respectively, by Eqs7b), (6b), (153, and(27). The  case of Fokker-Planck description:
energy-dependent number density and the particle current are IF(x.S)

obtained from Eq(72) as = —(Q(s))- ‘;_iJrV,D(S),VF_ (78)
n(x,E,s)=6(E—&(s))p(s)F(x,s), (738

(72

Since the solution of this equation in an infinite medium is

J(X,E,s)=8(E—&(s))p(s)v(s)[(Q(S))F(X,8)+ Ip(X,8)]. Gaussian, the approximation inherent in this equation, i.e.,
(73b) keeping the terms up to second order in the coupling param-

etere, is referred to as the Gaussian approximation in Ref.

The partial currents along a directionfollow as [4], and introduced as a model in the moment method.
- When the scattering is forwardly peaked, the one-speed
Ji(X,E,5)=dE—&(s)]p(s)v(s) transport approach reduces to the Fokker-Planck description.

However, the latter description takes into account energy
degradation in scattering in the continuous slowing-down ap-
(730 proximation.

X[{A-Q(8))+F(x,8) = 3n-Jp(X,9)],
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In the limit of isotropic scattering, we expect the small- cially near boundaries when the scattering is forwardly
coupling approximation, based on E@8), to be not as ac- peaked.
curate as the ordinary diffusion approximation with the first
quI|S|on dlstrlbyted source representing the effect of the ini- ACKNOWLEDGMENTS
tial monodirectional beam.
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